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PREFACE 

This Final Report covers work performed at RCA Laboratories during the 

period 17 June 1981 to 31 January 1983 under Contract No. NASl-15440. This 

work was carried out in the Solid State Devices Laboratory, under the direction 

of B. Hershenov. The Group Head was M. Ettenberg, and the Project Scientist 

was D. Botez. I. Ladany was involved with the fiber coupling and wrote Section 

III of this report. Staff members and support personnel who have contributed to 

this work in addition to the authors, and their areas of contribution, are 

listed below. 

J. C. Connolly -- LPE growth 

A. R. Dholakia -- Fiber polishing 

D. Gilbert -- Device characterization 

M. Harvey -- Device processing 

3. J. Hughes -- Lifetesting 

H. Kowger -- Facet coating 

D. P. Marinelli -- Device processing 
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SUMMARY 

The thrust of the program has been toward increasing single-mode spectral 

purity and stability both for unaged and aged devices. The results obtained 

include a study of single-mode behavior in aged constricted-double-heterojunc- 

tion (CDH) lasers, the elimination of fiber-related effects on the spectrum 

upon coupling to optical fibers, and the realization of the most powerful 

single-mode cw diode laser reported to date. 

Ten CDH devices were aged at 70°C and a constant output power of 3 mW per 

facet. After 5000 and 10,000 h of aging, the devices remained single-mode, 

thus representing the longest-lived single-mode diode lasers. The median life 

of CDH devices at 70°C is 7800 h, a figure comparable with the best results 

obtained from diode lasers. With an activation energy of 0.7 eV, the room- 

temperature extrapolated mean time to failure for CDH devices exceeds 10 ' h. 

The well-known spoiling of single-mode spectra upon coupling to optical 

fibers has been eliminated through the use of wedge-shaped fibers. The wedge- 

shaped fibers reflect virtually no light back into the laser while providing 

good laser-to-fiber coupling efficiencies. Wedge-shaped multimode fibers were 

fabricated at RCA Laboratories by a special polishing technique. 

In the quest for achieving higher power in a single longitudinal mode, 

two experiments were performed: (a) the spectra of high-power CDH-large-optical- 

cavity (CDH-LOC) lasers were measured on decibel (dB) scales; and (b) LOC 

structures were grown on substrate misoriented perpendicular to the direction 

of the channels. Thus it was found that rejection ratios between the main mode 

and the satellite modes in CDH-LOC spectra can reach values as high as 30 dB at 

30-mW cw output power. Growing on substrates misoriented perpendicular to the 

channels' direction yielded a novel device: the terraced-heterostructure 

large-optical-cavity (TH-LOC) diode laser. This device operates in large spot 

sizes to 50 mW cw in both a narrow-beamwidth (0 
II 

= 6O; 8, = 23O) fundamental 

mode and a single longitudinal mode. This represents the highest cw power ever 

achieved in a single longitudinal mode. 



I. INTRODUCTION 

In this report we describe the results of a year of,study carried out to 

improve the characteristics of single-mode diode lasers for a variety of NASA 

applications including wavelength-multiplexed fiber-optic communications, 

optical recording, free-space communications, and ranging. 

We have determined the long-term single-mode stability of single-mode CDH 

lasers, eliminated the feedback from optical fibers that led to mode instabili- 

ties, and improved the single-mode high-power capability of CDH-LOC-type 

structures. 



II. CDH LASERS 

There are a number of NASA requirements for single-mode AlGaAs lasers, 

such as spectral purity and spectral stability as a function of device aging. 

Although single-mode operation has been demonstrated for CDH' 
ei 

and CDH-LOC 

devices, improvements remain to be made for increasing the rejection of the 

satellite modes, lowering the spontaneous emission, and determining the spec- 

tral stability as a function of life. 

For the study of spectral-mode behavior with aging we used CDH devices. 

Specifically, we analyzed CDH lasers of the "ridge-guide" type (fig. 1), that 

is, CDH devices for which the lasing cavity is mainly a crescent-shaped active 

layer above a substrate mesa. Such devices are grown by one-step liquid-phase 

epitaxy above channeled substrates of misorientation direction parallel to the 

direction of the channels [l] (i.e., the [Oil] direction). As a result, the 

structures thus grown have a symmetrical geometry in the lateral direction. A 

typical spectral behavior as a function of output power is shown in figure 2. 

Unlike the CDH-LOC device [Z], the CDH has tight optical-mode confinement, 

which provides relatively small spot size (2-3 pm at l/e2 points in intensity) 

and single-mode cw operation to 6-7 mW per facet. Due to the small spot size, 

the reliable output-power levels are in the range of 3-5 mW per facet; thus, 

there is little or no interest in extending the single-mode operation in this 

structure to powers above 7 mW per facet. Single-mode powers above 7 mW are 

provided reliably by CDH-LOC devices. 

A. SPECTRAL BEHAVIOR WITH AGING 

As part of our study of CDH diode lasers we have placed on lifetest five 

devices for which the spectra were carefully measured at a 3-mW output power 

level. Of these, three lasers displayed single-mode spectra with rejection 

ratios between 10 and 20 dB; the other two had spectra composed of two dominant 

longitudinal modes (i.e., they were multimode devices). Before lifetest, the 

devices were screened by a "burn-in" of a 100 hours' duration. 

*Constricted-double-heterojunction. 
s*Large-optical-cavity. 
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Figure 1. Schematic representation of the "ridge-guide" 
type of CDH laser structure. 

RIDGE-GUIDE CDH 
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WAVELENGTH (A, 

Figure 2. Typical cw spectral behavior at various 
output power levels for CDH lasers. 
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The burn-in permits "weeding out" all the devices with infant mortality and 

helps stabilize the electrical contact for low electrical and thermal resis- 

tance. All lasers were aged at elevated temperatures (50 or 70°C) and 3 mW 

constant output power. After 4000-5000 h of continuous operation the devices 

were removed from the lifetest and their spectral characteristics were recorded. 

The results are summarized briefly in table I. 

TABLE I. SPECTRAL BEHAVIOR OF CDH LASERS AS 
A FUNCTION OF AGING TIME 

Initial-Peak Duration of Temperature 
(#I Laser Wavelength (8) Lifetest (h) ("Cl 

(1) 108-73': 8383 3922 70 

(2) 108-Z* 8331 4546 70 

(3) 148-43* 8500 5159 50 

(4) 159-9 8383 5136 50 

(5) 108-74 8343 4546 70 

itInitial single-mode device. 

Wavelength Shift 
(S) at 3-mW Output 

-38 

-24 

-5 

-16 

-16 

For all diodes the driving current needed to maintain a 3-mW output power 

has increased with aging. Devices #l and #I2 maintained the single-mode behavior, 

in that virtually the same rejection ratio values were obtained after lifetest 

as before: namely, 10 and 17 dB for lasers #l and 82, respectively. In 

figures 3(a) and 3(b) we show how the spectra of laser #2 looked before and 

after lifetest. In both cases, the spectral line-width is the same (i.e., 0.15 

8, as limited by the spectrometer). This clearly indicates not only that the 

device remained in the fundamental spatial mode, but also that no self-sustained 

oscillations, known to cause line broadening, have occurred. By contrast, 

device #3 went from single-mode operation to a multimode unstable condition 

(i.e., self-pulsations). Thus, the rather small spectral shift (i.e., -5 8) 

could be misleading since the device has changed modes of operation during 

testing. The multimode devices 84 and 5 kept similar multimode spectra after 

lifetest. We, therefore, conclude that spectral shifts at a constant output 

power of 16-38 8, with an average of 23.5 8 (i.e., devices fl, 2, 4, and 5) 

are typical of CDH lasers aged for 4000-5000 h at 50 or 70°C ambient temperature. 

5 



DBlOB-2 
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P=3mW 

8340 8330 8320 
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AFTER LIFETEST 
4546 h AT 70 ‘C 
P=3mW 
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I 1 I 

8320 8310 8300 
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Figure 3. Spectra of CDH laser at 3-mW cw output 
power: (a) before lifetest; (b) after 
almost 5000 h of 70°C-aging. 

In terms of room-temperature laser operation, these lifetests correspond to 

time periods between 50,000 and 200,000 h. 

The fact that all aged devices displayed spectral shifts to shorter wave- 

lengths is somewhat puzzling because increases in junction temperature normally 

associated with aging (i.e., due to intermetallic formation the thermal resist&e 

increases) would shift the gain peak to longer wavelengths. The only known 

mechanism for spectral shifts to shorter wavelengths has been band filling [3], 

that is, shifts in gain peak associated with increased carrier concentrations 

needed for lasing. However, the shifts we recorded cannot be attributed solely 

to band filling as the injected carrier concentration needed for lasing is in- 

creased [3] at a fixed junction temperature. For example, according to Stern's 

calculations [3], a 10% increase in threshold should provide only a 7-A shift 

to a shorter wavelength. Thus it appears that, as the device ages, an annealing 
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process takes place. This affects the shape of the gain profile [3] and/or 

mechanism responsible for single-longitudinal-mode selection [4] in such a way 

that oscillation to a shorter wavelength is preferred. As the devices continue 

to age, the junction temperature increases, causing, in turn, the expected 

spectral shifts toward longer wavelengths. As can be seen (Section 1I.B) in 

comparing devices aged for 10,000 h with devices aged for 5000 h, relative shifts 

to longer wavelengths do in fact happen. 

B. CDH-LASER RELIABILIlY 

We have reported previously that the cw operational characteristics of CDH 

lasers include very low threshold-current temperature sensitivity [5] as well 

as lasing up to 17OOC [6], the highest heatsink temperature ever reported for 

cw operation of a semiconductor diode laser. Such excellent characteristics 

should make CDH lasers quite reliable. As shown below, we have found the 

reliability of CDH devices to be on a par with the best reliability obtained for 

AlGaAs lasers [7-g]. A median life of 7800 h is found at 70°C; this extrapolates 

to 45 years of median life at room temperature when a 0.7-eV activation energy 

is assumed. Furthermore, the single-mode character of CDH devices (i.e., single- 

longitudinal-mode cw operation and fundamental-spatial-mode operation) is main- 

tained after 10,000 h of accelerated aging at 70°C. This represents the longest 

reported diode-laser lifetime in single-longitudinal-mode operation. 

The CDH laser structure that was lifetested is of the "ridge-guide" type 

[l,lO], that is, a device with a convex-lens-shaped active layer above a sub- 

strate mesa (see fig. 1). Such devices have been shown to be single mode in 

cw operation to cw power levels as high as 7 mW per facet, and to have thresh- 

old-current temperature coefficients, T o, in the 180-400°C range [5,6]. Ten 

devices from two CDH wafers were placed on lifetest at power levels between 3 

and 4 mW. Threshold currents were between 60 and 100 mA, and the initial 

thermal resistances were between 25 and 40°C/W. The lasers were mounted with 

In solder on Cu heatsinks and were coated with (A/Z) passivation coatings of 

A1203 [ll] on the emitting facets, and dielectric-stack reflecting coatings [12] 

on the rear facets. The devices emitted in a single mode at 8300 or 8700 8, 

depending on which wafer they came from. For a given device, all through the 

lifetest, the output power was kept practically constant by adjustment of the 

drive current whenever a &lo% change in output power was observed. The only 

preselection for the devices was a 100-h burn-in at room temperature, at 3-mW cw 
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output power. The devices that showed little or no change in their operational 

characteristics after this burn-in were then placed on lifetest. 

Figure 4 displays the log-normal distribution of CDH-laser failures as a 

function of aging time. Failure is defined as occurring when the device could 

no longer maintain the 3-mW output power level at 70°C. The median life is 

7800 h, a figure comparable with the best results obtained both for oxide-stripe 

devices [7-91 and for other types of mode-stabilized lasers grown over nonplanar 

substrates [13,14]. The standard deviation has a value of 1.38, which together 

with the median life provides a room-temperature extrapolated mean time to 

failure (MTTF) [15] in excess of lo6 h. The actual formula used is 

MTTF = Xrn exp (02/2) (1) 

where t m is the median life (i.e., time at which 50% of the tested devices have 

failed) and IJ is the standard deviation. 

In (Tm> 
cr = In (To) (2) 

where t o is the point on the log-normal distribution at which 15.8% of the 

devices have failed [15]. Together with a t of 7800 h, and an activation m 
energy of 0.7 eV [7], the standard deviation of o = 1.38 (obtained from fig. 

4) gives an extrapolated room-temperature MTTF ofml.l x lo6 h. The 106-h 

figure for MTTF places CDH devices in the forefront of state-of-the-art diode- 

laser research (7-91. The extrapolated median life at room temperature is then 

4 x 105 h -- .that is, approximately 45 years. 

As shown in figure 4, four devices of the initial 10 are continuing to 

lase after 10,000 h on lifetest. The relative drive-current increases needed 

to keep a constant output power of 3 mW per facet at 70°C were 3%, 6%, 7%, and 

21% at the 10,000-h mark. The aging behavior of the devices appears independent 

of the lasing wavelength. In figure 5 we compare the cw operational character- 

istics of one of the best CDH devices before aging and after 10,000 h of 70°C 

aging. The room-temperature light-current characteristics in figure 5(a) show 

a small increase (3%) in cw threshold current without any observable change in 

external differential quantum efficiency. The change in pulsed threshold current 



CDH 
3mW; 70°C 

/ 

.‘. 
. 

. 
r, = 7800 h 

/ 

. CT = 1.38 
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Figure 4. Measured distribution of lifetimes for 10 
(Al,Ga)As CDH lasers aged at 70°C ambient 
and constant 3-mW cw output power level per 
facet. The solid line represents a log- 
normal distribution with a 7800-h median 
lifetime at 70°C and a standard deviation 
of 1.38. The open circles with arrows in- 
cate devices that are still operating. 

was found to be within the error of measurement. Therefore, the increase in the 

cw threshold current could be attributed to an increase in device thermal 

resistance , possibly as a result of intermetallic formation in the In solder 

[71. The threshold-current temperature coefficient, To, over the temperature 

interval ZO-70°C was found to maintain the initial value (i.e., To = 190 K) 

after aging. 

The CDH-device lateral far-field patterns before and after aging [fig. 

5(b)] are found to be identical (i.e., 0 
II 

= 11.3O in both cases). This is 

expected for an index-guided device and is in sharp contrast to the far-field 

changes common in aged oxide-stripe devices [16]. The invariance in far-field 

pattern means that the lasing-spot size remains unchanged at E3.2 pm (l/e2 

points.in intensity). It should be noted that CDH devices, when operated at 



3- to 4-mW cw output power, have a reliability similar to that of oxide-stripe 

devices [7-91, even though the power density at the facet is two to three times 

higher than that of typical oxide-stripe lasers operating at the same output 

powers. 

Finally, in figure 5(c), we compare the 4-mW-output cw spectra of a CDH 

device before and after 10,000 h of aging. The spectrum is still single 

longitudinal mode. The only previously published report of single-longitudinal- 

mode operation after aging was for transverse-junction-stripe (TJS) lasers 

[17], but then single-mode behavior was reported only after 2500 h at 70°C and 

at 2-mW-per-facet cw output. This means that CDH lasers have shown the longest 

reported operation in a single longitudinal mode. In 10,000 h the single-mode 

cw spectrum of the CDH device has shifted 10 i$ toward a shorter wavelength. As 

reported in Section I.A, already at the 5000-h aging mark all five CDH lasers 

measured had shown spectral shifts to shorter wavelengths. The laser whose 

characteristics we display in figures 5(a) to 5(c) is #DB108-2. From table I 

it is clear that at 5000 h of aging the shift to a shorter wavelength was 

higher than the shift at 10,000 h (i.e., 24 vs 10 8). We attribute this 

relative shift to a longer wavelength to increases in junction temperature 

during aging between the 5000-h mark and the 10,000-h mark. In fact, the diode 

thermal resistance at 10,000 h was found to be higher than the initial value. 

That is, after 10,000 h of aging the thermal resistance was measured to be 

63OC/W, whereas the initial thermal resistance had been 38OC/W. 

The excellent reliability results obtained with CDH lasers prove that 

one-step LPE over nonplanar substrates is a reliable method of growing long- 

lived mode-stabilized diode lasers. Unlike other nonplanar-substrate devices 

[14,18,19], the CDH laser does not rely on lasing-cavity proximity to the 

substrate for lateral mode control. CDH devices are therefore less likely to 

be affected by degradation initiated by defects and/or dislocations in the GaAs 

substrate. 

We conclude that the room-temperature extrapolated median lives of CDH 

devices are comparable with those of the most reliable diode lasers. Further- 

more, CDH devices have a stable mode both spatially and in frequency after being 

aged for 10,000 h at 70°C ambient temperature. This high degree of reliability 

and mode stability makes CDH devices quite promising for use in a wide range 

of applications. 
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Figure 5. Comparison between key electro-optical character- 
istics of an aged CDH laser before and after 
10,000 h of 70°C-aging: (a) light-current charac- 
teristics, (b) lateral far-field patterns, and 
(c) spectra at 4-mW output power. 
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III. COU!XING OF SINGLE-MODE LASERS INTO MULTIMODE FIBERS 

During the previous contract we noticed that the spectrum of our lasers 

was frequently disturbed by the fiber. That is, a single-mode spectrum was 

often changed into a multimode one as measured at the output end of the fiber. 

It appeared quite clear that feedback effects were involved, and we tried to 

alleviate them by tilting the fiber relative to the laser so as to reduce the 

power returned into the cavity. Although this method was occasionally success- 

ful, it neither did allow maximizing the coupling efficiency, nor did it assure 

that the energy in the fiber was traveling mainly in the core region. About 

this time we were made aware by H. Hendricks, of NASA, of a trade-journal 

publication dealing with wedge or "roof prism" fiber input configurations. In 

this section we report on our work with this structure. 

The coupling efficiency between diode lasers and multimode fibers whose 

input end is polished to an obtuse-angled wedge or "roof" configuration can be 

very high [20]. The angles of incidence presented by a wedge are similar to 

those obtained by beveling or tilting of the fiber, which has been reported to 

reduce the optical feedback into the laser [21]; convenience in fabrication is 

aided by the use of flat surfaces to achieve the input coupling (fig. 6). 

In the case of step-index fibers, the connection between the wedge angle 

and the fiber acceptance half-angle, 8, is easily shown to be 

fj = sin-l {n, sin [$ + cos-1 (n,/n,)lI - 4) (3) 

where @ is the complement of the wedge half-angle ~JI, and the other symbols are 

defined in figure 7. 

For a given 8 and I$ (or \cI), the fiber-to-laser distance must be set less 

than (cot 8 - cot $)d/2 to avoid truncation losses at the input. The minimum 

value of ~JI occurs when the incident ray is at the grazing angle, i.e., when 

8 = *. From this it follows that 

* min = 90 - [sin-l (l/n,) - cos -I (n,/n,) 1 

A typical $min is 56O, and a reasonable $ is a few degrees larger. For the 

experiments carried out here, wedges with $ = 62O were polished, one side at a 

12 



Figure 6. SEM photomicrograph of the polished wedge at the 
input end of the fiber. 

Figure 7. Geometry of the fiber acceptance angle. 

time, onto one end of short sections of 0.2 N.A. graded index fibers with 50-pm 

core diameter. Using a CDH single-mode laser [I,ZZ] with a beam full width at 

13 



half maximum (FWHM) of 40' normal to the junction plane, at a distance of 15 
. 

pm, we obtained a coupling efficiency of 58%,l typical of values reported 

previously [20]. 

A convenient way of evaluating feedback is to record the spectrum of a 

single-longitudinal-mode laser directly and then compare it with the spectrum 

taken from a fiber driven by the same laser under identical conditions. Any 
feedback perturbs the laser and causes new spectral modes to appear [23]. 

Although not equal to that of Bludau and Rossberg [24] in detecting feedback, 

the method is sensitive; in the case of the channeled-substrate-planar (CSP) 

laser it was shown that [25] spectroscopy reveals feedback-induced modes at an 

external reflectivity of 2-4 x 10 -4 . To make sure the observed feedback is not 

caused by other reflecting surfaces, it is essential that such other reflections 

be eliminated, especially at the far end of the fiber [26]. 

The method used here to avoid end reflections is to bevel the output end 

(fig. 8). The bevel angle UJ must satisfy the inequality 

cos -' (l/n,) + cos-1 (n,/n,) < Q < sin-l (n,/n,> (5) 

The upper limit arises from the requirement that no light rays travel backwards 

within the core, and the lower limit assures that angles of incidence at the 

exit surface are less than critical. It is desirable to make w as small as 

possible in order to get maximum attenuation of backwards reflected rays, but 

one should not design the bevel to be too close to the lower limit either, as 

that would cause reflection losses greater than 4% at the exit end. Most of 

the bevels used were in the vicinity of 55', close to the critical angle for 

the fiber used. The output beam with such terminations is inclined toward the 

bevel, and the angle 6 between the beam direction and the fiber axis is given 

by 

6 = sin -1 
(nl sin p) - p (6) 

where p is the complement to the bevel angle w. 

1 We have not observed any significant reduction of coupling efficiency 
when the fiber was coated along a portion of its length with a mode- 
stripping compound. The efficiency measured here was lower than the 78% 
maximum reported in reference 20. 
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Figure 8. Geometry of the fiber output bevel. 

A CDH single-longitudinal-mode laser was mounted on a temperature-stabilized 

block, and operated at a constant current with an output of about 3 mW. After 

the spectrum was recorded, a wedged fiber with beveled output end and a length 

of 30 cm was interposed between the laser and the spectrometer; then the spec- 

trum was recorded again. Figure 9 shows that the two spectra are in close 

agreement. Thus, any optical feedback must be less than that causing spectral 

changes in CDH lasers. 

The operating principles of the CDH laser and the CSP laser are different, 

and it is not known whether their sensitivity to feedback effects is similar. 

Assuming that they are not much different in this respect, we may conclude that 

the arrangement used, i.e., a wedge at the input end and a bevel at the output 

end, maintains the reflected power below the -10 -4 level. Even lower reflec- 

tivities were reported in reference 24, although the authors do not make clear 

how they avoided reflections from the far end of the fiber. Thus 5 km of fiber 

with 2 dB/km attenuation may not be sufficient to prevent far-end reflections 

from dominating front-end reflections. In the present case, it appears that 

the bevel used at the end of a quite short section (30 cm) of fiber was effec- 

tive in bringing the back-end reflections below the aforementioned (~10~~) 

level. 

Equations (3) to (6) can only be taken as rough approximations for the 

case of parabolic-index fibers, the acceptance half-angle in that case being 
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Figure 9. Spectra from a CDH single-mode laser. Upper 
figure: Direct output from laser. Lower 
figure: Output from fiber end. 

smaller than predicted by equation (3). In general, the coupling efficiency of 

parabolic-index fibers is about equal to that of step-index fibers for laser 

sources, but is half for Lambertian radiators [27], where the error in these 

equations may be expected to be the greatest. 

Wedged fibers of the kind described above are now being used for coupling 

single-mode lasers into multimode fibers, and some of these fibers were delivered 

to NASA for study and evaluation. 
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IV. HIGH-POWER LOC-TYPE SINGLE-MODE LASERS 

Aside from single-mode stability under accelerated aging conditions and/or 

coupling-to-fiber conditions, objectives of the program were to improve both 

the high-power capability of single-mode devices as well as the rejection ratio 

between the main mode and the satellite modes in a single-mode device. Below 

we show results of spectral measurements on decibel (dB) scales for high-power 

single-mode CDH-LOC lasers, and describe the structure and results for a new 

type of high-power laser: the terraced-heterostructure large-optical-cavity 

(TH-L0C) laser. 

A. SINGLE-MODE SPECTRA OF HIGH-POWER CDH-LOC DEVICES 

By using high-power (i.e., *30 mW cw) single-mode CDH-LOC lasers and 

spectral measurements on decibel scales, we have studied the modal purity of 

CDH-LOC devices. We have reported previously [2] that above 20-mW output power , 

levels we could not distinguish any longitudinal-mode satellites for spectra 

recorded on a linear scale: to better resolve the spectra we had to record 

them on decibel scales (fig. 10). At lo-mW output power the ratio between 

the main mode and its satellites is 20 dB. As the power is increased the ratio 

increases as well (i.e., the devices become more purely single mode). At 30-mW 

cw output power the main mode is 1000 times (i.e., 30 dB) stronger than its 

nearest satellites (fig. 10). The improvement in rejection ratio with 

power agrees with the most current theories [4] on single-longitudinal 

behavior in diode lasers. Results similar to the ones shown in figure 

been reported for CSP lasers, but only at power levels below 20 mW cw 

That is, CDH-LOC lasers have provided the highest power in a virtually 

(i.e., 30-dB rejection ratio) single mode. From a comparison of CDH w 

increasing 

mode 

10 have 

281. 

pure 

th 

CDH-LOC devices it appears that the latter are better suited to achieving 

a rejection of satellite modes of 30 dB or better. 

B. THE TH-LOC LASER 

As part of the contract research effort we have investigated alternative 

approaches to the CDH-LOC laser structure for obtaining high-power single-mode 

operation. Our previous studies of LPE growth over channeled substrates [l] 

indicated that the relative position of the substrate-misorientation direction 
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Figure 10. Typical cw spectra of CDH-LOC lasers 
at 10 mW per facet and 30 mW per facet, 
on a decibel (dB) scale. 

with respect to the direction of the channels can affect the grown-structure 

geometry. Thus, when the substrate misorientation direction is parallel to the 

direction of the channels the grown structure is symmetrical; otherwise, the 

grown-structure geometry is asymmetrical. The definition of substrate mis- 

orientation and the influence of that misorientation on LPE growth over channeled 

substrates are shown schematically in figure 11. In this example the substrate 

is misoriented CI degrees off the (100) plane toward the arbitrary direction 

[hkl]. Not only the amount of substrate misorientation is important, but also 

its relative position with respect to the direction of the channels. In figure 

12, B, the angle between the channels' axis (i.e., [011]) and the [hkl] direc- 

tion, is defined. Asymmetry in growth was observed for CDH-LOC structures 
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SUBSTRATi SURFACE 

Figure 11. Diagram showing the effects of substrate 
misorientation on liquid-phase epitaxy 
over channels. The substrate is misoriented 
(Y degrees off the (100) plane and toward 
the [hkl] direction. 

Figure 12. Diagram showing the definition of f3, the 
angle between the substrate-misorientation 
direction (the tilting direction) and the 
axis of the channels. 
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where the angle p was between 20° and 45O. This asymmetry is a reflection of 

the LPE growth tendency to reconstruct the low-surface-energy (100) plane. 

We grew on substrates where /3 took a maximum value (i.e., S = go"), making 

the direction of the substrate misorientation perpendicular to the direction of 

the channels. The difference in growth was dramatic (fig. 13). Instead of the 

concave-shaped lasing cavity characteristic of the CDH-LOC structure, we obtained 

a large terrace-like cavity. The terrace is formed away from the originally etched 

substrate mesa, thus reflecting the strong tendency of LPE for reconstructing 

the (100) surface. The lasing cavity occurs on the terrace slope as a result 

of lateral variations in active- and guide-layer thicknesses. Due to its 

geometry, the novel structure was named terraced-heterostructure large-optical- 

cavity (TH-LOC) laser [29]. 

10pm 

Figure 13. Schematic representations of the CDH-LOC 
and TH-LOC laser structures and their 
respective lasing areas. 

From 5O angle-lapped cross sections it was found that both the active and 

the guide layers went through a maximum on the terrace slope. Thus, the active 

layer increases in local thickness from 0.12 to 0.16 pm over 7 pm in the lateral 

direction, while the guide layer reaches a maximum thickness of 2.25 pm at the 

terrace shoulder. The variations in active- and guide-layer thicknesses are 
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illustrated in figure 14. The thickness variations are plotted with respect to 

the active-guide-layer interface. In the lateral direction everything is 

plotted with respect to the shoulder on the top surface of the guide layer. 

The various thickness variations combine to provide a weak lateral positive- 

index waveguide (An Z 3 x 10a3> [fig. 14(c)], which allows a wide fundamental 

mode: 6.5 pm at l/e2 points in intensity. Since the device is of the LOC type, 

the spot size in the plane perpendicular to the junction is wide as well: 2 w 
at l/e2 points in intensity. 

I 

f3 
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Figure 14. TH-LOC laser. Top: Schematic representation; the 
structure is drawn to scale with the exception of the 

active layer. The lasing spot is shown at l/eL 
intensity. Lower left: Active- and guide-layer 
thickness variations with respect to the active-guide 
layer interface. Lower right: Relative lateral varia- 
tion of the effective refractive index corresponding to 
the thickness variations of the active and guide layers. 

TH-LOC lasers were operated in cw operation and found to have thresholds 

in the 60- to 80-mA range (fig. 15). A notable characteristic of these thresh- 

old currents was their relative insensitivity to ambient-temperature variations, 
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Figure 15. cw light-current characteristics of TH-LOC lasers 
at various ambient temperatures. Inset: High-reso- 
lution photograph of typical near-field pattern of 
TH-LOC lasers. 

compared with the behavior of threshold currents in the CDH-LOC device. Speci- 

fically, while the threshold-current temperature coefficient To is found to be 

70-80°C in CDH-LOC lasers [2], in TH-LOC lasers To has values of 190°C to room 

temperature and 105 to 50°C ambient temperature (fig. 16). We believe this 

enhancement in To to be caused by temperature-dependent current focusing in the 

very same way in which this occurs in CDH lasers [l]. The current focusing effect 

in the TH-LOC structure is favored by the fact that the high-resistivity 

p-AlGaAs layer varies in thickness by a factor of two (i.e., from 1.5 to 3 pm) 

across the lasing cavity. The relatively high To value as well as low thermal 

resistance values (Rth = 20-30°C/W) have allowed TH-LOC laser operation to 60 

mW cw at room temperature and to 15 mW cw at 70°C ambient temperature. 

Fundamental-mode cw operation has been obtained to a power level of 50 mW 

per facet (fig. 17). The beams are narrow (6 ,, = 6O; 8, = 23O) as a result of 

the large near-field spot size. Furthermore, the device operated in a single 

longitudinal mode to 50 mW cw (fig. 18). The 50-mW value is of importance as 

it represents the highest power into a single longitudinal mode ever reported 

from semiconductor diode lasers. The fact that a record-high single-mode power 
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Figure 16. Threshold-current temperature dependence for TH-LOC lasers. 
Inset: Schematic representation of current focusing in 
TH-LOC structures. 
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Figure 17. cw spectra of TH-LOC lasers at elevated power levels. At 
50 mW from one facet, the diode is driven at 2.5 times 
threshold current. Spectrometer resolution: 0.15 R. 
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Figure 18. Typical cw far-field patterns of TH-LOC lasers in 
planes parallel and perpendicular to the junction. 

is associated with a very large spot size tends to indicate that the upper 

limit of the single-mode operating regime in AlGaAs lasers depends directly on 

the emitted power flux density, as has been experimentally observed for GaAs 

TJS lasers at 77 K [30]. Our observations are also in agreement with current 

theories of longitudinal-mode behavior, which predict that the single-mode 

regime is limited by spatial hole burning [31] and/or intraband relaxation 

times [32]. 

In conclusion, we have realized a new type of high-power single-mode diode 

laser, one that provides the highest power into a single mode ever achieved. 

The TH-LOC structure is grown similarly to the CDH-LOC structure, the only 

difference being that the substrate is misoriented perpendicular to the direc- 

tion of the channels. 
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v. CONCLUDING BEMABKS 

During the past year we have essentially fulfilled all the requirements of 

the program. Long-term reliability has been demonstrated for the CDH laser, as 

has its ability to maintain single-mode cw operation after long times (5000 to 

10,000 h) on lifetest at elevated temperatures. The problems associated with the 

coupling of single-mode lasers to multimode fibers have been virtually eliminated 

by the use of wedge-shaped optical fibers. 

As to high-power single-mode diode-laser operation, we have demonstrated 

30-dB rejection ratios from CDH-LOC lasers operated around the 30-mW cw output 

power level. A novel LOC-type high-power device, the terraced-heterostructure 

LOC (TH-LOC), has been developed. The new structure exploits the properties of 

LPE over substrates misoriented perpendicular to the direction of the channels. 

Up to 50 mW cw has been obtained in single-mode operation; this is the highest 

single-mode power ever reported from diode lasers. 
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